

ICPE 2023

August 23 - 27

HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

pharmacoepi.org #ICPE23 | @IntPharmacoEpi

Combining randomized trials and observational studies data for comparison of treatment effects:

An application to disease modifying therapies for multiple sclerosis

E. Muros-Le Rouzic¹, Y. Heer², S. Yiu³, V. Tozzi², S. Braune⁴, P. van

Hoevell², A. Bergmann⁴, C. Bernasconi⁵, F. Model⁵, L. Craveiro⁶

¹ Real-World Data Sciences, F. Hoffmann-La Roche Ltd, Basel, Switzerland

² Data & Analytics, PricewaterhouseCoopers AG, Zürich, Switzerland

³ Data & Statistical Sciences, Roche Products Limited, Welwyn Garden City, United Kingdom

⁴ NeuroTransData, Neuburg an der Donau, Germany

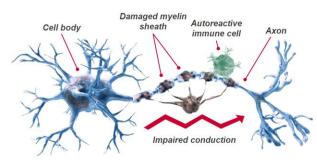
⁵ Data & Statistical Sciences, F. Hoffmann-La Roche Ltd, Basel, Switzerland

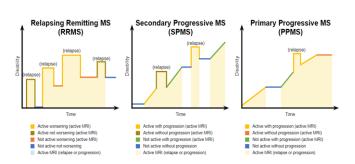
⁶ Global Medical Affairs, F. Hoffmann-La Roche Ltd, Basel, Switzerland

HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

Disclosures

- This research was funded by F. Hoffmann-La Roche Ltd, Basel, Switzerland
- The following personal or financial relationships relevant to this presentation existed during the prior 12 months and/or during the conduct of the study:
 - o E. Muros-Le Rouzic, L. Craveiro Employee of and shareholder in F. Hoffmann-La Roche Ltd
 - S. Yiu Employee of Roche Products Ltd.
 - C. Bernasconi Consultant for F. Hoffmann-La Roche Ltd.
 - o F. Model Employee and shareholder of F. Hoffman-La Roche Ltd at the time of this study; Currently employee of Denali Therapeutics.
 - Y. Heer, V. Tozzi, P. van Hoevell Employee of Pricewaterhouse Coopers; contracted to perform statistical projects for Neuro Trans Data at the time of this study.
 - S. Braune Received honoraria from Kassenärztliche Vereinigung Bayerns and health maintenance organisations; from Biogen, Merck,
 NeuroTransData, Novartis, and Roche; also received honoraria and expense compensation as a board member of NeuroTransData
 - A. Bergmann Received consulting fees from advisory board, speaker and other activities for NeuroTransData; project management and clinical studies for and travel expenses from Novartis and Servier.




HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

Background

- Multiple Sclerosis (MS)
 - Chronic, immune-mediated disease of the CNS characterised by inflammation, demyelination and degenerative changes
 - Neurological symptoms (relapses) and accumulating permanent disability
- Affects > 2 Mio individuals worldwide
- Heterogeneous disease, conventionally defined as either relapsing or progressive phenotypes

Bruck W. J Neurol 2005;252:v3-v9

Lublin FD, et al. Neurology 2014;83:278-86

HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

Rationale

- Ocrelizumab (OCR)
 - Humanized anti-CD20+ monoclonal antibody
 - o In patients with relapsing form of MS (RMS), clinical benefit demonstrated vs. interferon β -1a (IFN β -1a) in phase 3 randomised controlled trials (RCTs)¹
 - No head-to-head RCTs directly compared OCR vs. other disease-modifying therapies (DMTs)
- High quality real-world observational studies are increasingly used for comparative effectiveness research in MS
- Datasets capturing OCR use in real-world settings remain limited in sample size, treatment exposure and duration of follow-up due to recent approval (USA end-2017, EU early-2018)

HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

Objectives

To explore the combination of clinical trials and real-world data for comparative effectiveness analysis of the treatment effect of multiple DMTs in patients with RMS.

HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

Data sources

Clinical trial data

• Pooled data from pivotal phase 3 OPERA I & II RCTs¹ and open-label extension (OLE) phase

Real-world data

- NeuroTransData (NTD) registry³
 - Germany-wide network of neurologists and psychiatrists specialists
 - Includes ~25,000 patients with MS
 - Captures demographics, clinical history, patient-related outcomes and clinical variables in real-time during clinical visits (average of 3.5 visits per patient each year)

¹Hauser SL, et al. N Engl J Med 2017;376:221-34; ²Polman CH, et al. Ann Neurol. 2011;69(2):292-302; ³Braune S, et al. BMJ open. 2021;11(8):e042480-e042480

HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

Study population

Clinical trial data

- All patients randomised to IFN β-1a or OCR arms excluding US patients
 - Non-US population was 64% European ⇒ more comparable to German NTD population
 - Treatment-by-subgroup interaction observed for body mass index (BMI) on disability outcome between
 US and ex-US patients ⇒ BMI not systematically collected in NTD Registry to adjust for such interaction

Real-world data

- RMS patients aged ≥18 years, index therapy initiated after 1 Jan 2009, neurological stability at index therapy (no relapse nor ongoing treatment with steroids 8 weeks prior to index therapy)
 - o Index therapies: IFN β-1a, natalizumab, glatiramer acetate, fingolimod, dimethyl fumarate, teriflunomide

HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

Methods (1)

Comparative approach	 Use of patient-level data Propensity score matching with 1:1 pair-matching ratio 5-to-1 digit greedy nearest neighbor algorithm, no caliper restriction 		
Covariates balance assessment	 Summary statistics of baseline covariates pre- and post-matching Standardized mean difference (0.2 threshold) Density functions of propensity score distribution pre- and post-matching 		
Outcomes	 Time to first relapse Time to onset of 24-week confirmed disability progression (24W-CDP) 		
Follow-up	 Analyses conducted over 288 weeks (5.5 years) of total follow-up from OCR RCT double-blind period and OLE phase 		

HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

Methods (2)

Statistical analysis	 Intention-to-treat approach Cox proportional hazard model Treatment effects reported as hazard ratios with 95% confidence intervals (2-sided tests) Kaplan-Meier plots Analyses were exploratory with no adjustment for multiple comparisons applied 					
Censoring	 Patient censoring In NTD applied at time of registry discontinuation, when switching to OCR or other anti-CD20 therapy or or at end of follow-up whichever came first For OCR cohorts, data until treatment discontinuation was used 					
Sensitivity analysis	Presence/absence of Gd+ lesions not used as a matching factor					

HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

Matching factors

Covariates associated with both treatment allocation and outcome were selected to reduce bias of the effect estimation based on empirical clinical knowledge and published evidence¹

	Age	Biological Sex	Disease duration	EDSS Relapses i (baseline*) previous ye		Previous treatment	Gd+ lesions (baseline*)
	Continuous	Dichotomous	Ordinal	Continuous	Ordinal	Dichotomous	Dichotomous
Time to 1st relapse	X	Χ	Х	X	X	Χ	Х
Time to 24-week CDP	Χ	Χ		X	Χ	Χ	

Biological sex: Male vs. Female; Time since symptom onset: \leq 3 years, > 3 to \leq 5 years, > 5 to \leq 10 years; Previous treatment: Yes vs. No; Gadolinium-enhancing (Gd+) lesions: Present vs. Not present; EDSS, Expanded Disability Status Scale

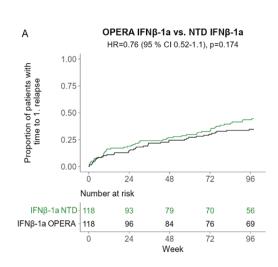
*EDSS or MRI measurements collected within a window of +/-3 months relative to index-therapy therapy initiation

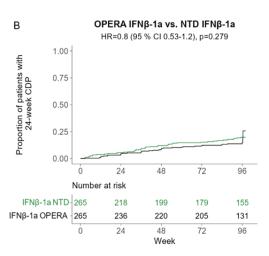
¹Laplaud D-A, et al. Comparative effectiveness of teriflunomide vs dimethyl fumarate in multiple sclerosis. Neurology. 2019;93(7):e635

HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

Results

- 6 distinct paired-matched cohorts were built for each outcome
 - Relapse outcome: pair-matched cohorts ranged from 111:111 to 185:185 patients
 - Disability progression: pair-matched cohorts ranged from 200:200 to 331:331 patients
 - Lower sample size in relapse outcome due to use of Gd+ lesions as matching factor
- Matching procedure resulted in cohorts overall well-balanced for baseline covariates and matching factors (all SMDs <0.2)




HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

Results - Feasibility assessment

Exchangeability of clinical trials and real-world datasets assess

- Compare outcomes in OCR RCTs vs. NTD paired-matched IFN β-1a cohorts over
 2-years OCR RCTs double-blind period
- No significant difference observed for time to first relapse or time to 24W-CDP
- Numerical trend of fewer relapses and disability events in IFN β-1 treated patients in OCR RCT matched cohort

HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

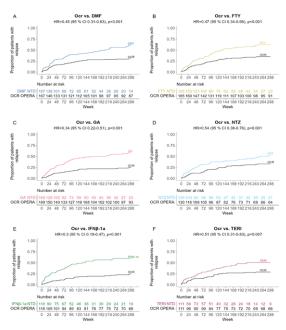
Results - Comparative analyses

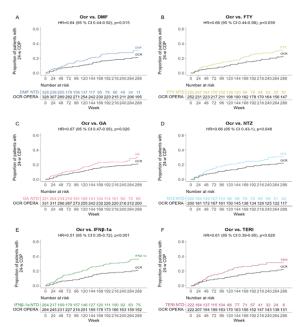
OCR treatment was associated with statistically significant risk reduction in time to first relapse or disability vs. any treatment pathways in NTD, regardless of each index DMT

• Similar results for relapse outcome in sensitivity analysis without Gd+ lesions as a matching factor

OCR vs. Index therapy	Time to first relapse				Time to 24W-CDP			
line in NTD registry	N	HR	95% CI	p-value	N	HR	95% CI	p-value
DMF	167:167	0.45	0.31-0.63	<0.001	328:328	0.64	0.44-0.92	0.015
FTY	185:185	0.47	0.34-0.66	<0.001	252:252	0.66	0.44-0.98	0.039
GA	169:169	0.34	0.22-0.51	< 0.001	331:331	0.67	0.47-0.95	0.026
NTZ	130:130	0.54	0.38-0.76	<0.001	200:200	0.66	0.43-1.00*	0.048
IFN β-1a	118:118	0.30	0.19-0.47	< 0.001	264:264	0.51	0.35-0.72	<0.001
TERI	111:111	0.51	0.31-0.83	0.007	222:222	0.61	0.39-0.95	0.029

^{*}Note: the 3-digit 95% CI was (0.431-0.996) and the upper limit was rounded to 1.00, however 95% did not include the 1.0 value. 24W-CDP, 24-Week Confirmed Disability Progression; CI, Confidence Interval; DMF, dimethyl fumarate; FTY, fingolimod; GA, glatiramer acetate; HR, Hazard Ratio; IFN β-1a, interferon β-1a; N, number; NTD, NeuroTrans Data Registry; OCR, ocrelizumab; NTZ, natalizumab; TERI, teriflunomide



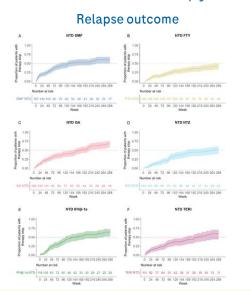

HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

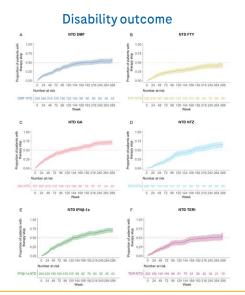
Results - Comparative analyses

Time to first relapse

Disability outcome

CI, Confidence Interval; DMF, dimethyl fumarate; FTY, fingolimod; GA, glatiramer acetate; HR, Hazard Ratio; IFN β-1a, interferon β-1a NTD, NeuroTrans Data Registry; NTZ, natalizumab; OCR, ocrelizumab; TERI, teriflunomide





HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

Results - Treatment discontinuations / switches

Over observation period of 5.5 years, ≥50% of patients in nearly all NTD matched cohorts discontinued initial index therapy for each outcome

#ICPE23

HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

Discussion

Merging patient-level data from trials and real-world studies remains largely unexplored in MS¹

Strengths	Limitations			
 High data quality of real-world NTD registry Matching factors incl. brain imaging lesions data 	Require patient-level data sharing with challenges for data privacy and secondary use of data			
 Density of clinical visits/assessments Clear outcome definitions, certified raters for disability 	PSM resulted in selection of narrower population, potentially compromising generalizability of results			
Feasibility assessment of comparative approach for baseline	Control only for measured confounders at baseline			
 ITT framework	• Use of DMTs followed real-world treatment policy principles, potential for attrition bias			
 Account for dynamic/heterogeneous treatment pathways in real-world setting and mitigate informative censoring 	 Representativeness of NTD registry compared to other MS centers might be limited 			

¹Signori A, et al. Cladribine vs other drugs in MS. Neurology - Neuroimmunology Neuroinflammation. 2020;7(6):e878.

HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

Conclusion

- Combining patient level-data from RCTs and real-world datasets represent an option to address knowledge gap arising from the absence of head-to-head clinical trials comparing the clinical efficacy of multiple DMTs for MS
 - Could prove particularly useful at the time of approval of a new DMT, e.g., to inform decision-making for access/reimbursement, treatment guidelines and policies

- Future research
 - Explore other methods accounting for time-dependent confounders (e.g., treatment status and allocation at any time point) to further assess the effect of DMTs conditional on treatment persistence

HALIFAX, NOVA SCOTIA, CANADA
HALIFAX CONVENTION CENTRE

THANK YOU.

ICPE 2023

August 23 - 27

HALIFAX, NOVA SCOTIA, CANADA HALIFAX CONVENTION CENTRE

pharmacoepi.org #ICPE23 | @IntPharmacoEpi