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ABSTRACT
While sample sizes in randomized clinical trials are large enough to estimate the average treatment effect
well, they are often insufficient for estimation of treatment-covariate interactions critical to studying data-
driven precision medicine. Observational data from real world practice may play an important role in
alleviating this problem. One common approach in trials is to predict the outcome of interest with separate
regression models in each treatment arm, and estimate the treatment effect based on the contrast of the
predictions. Unfortunately, this simple approach may induce spurious treatment-covariate interaction in
observational studies when the regression model is misspecified. Motivated by the need of modeling the
number of relapses in multiple sclerosis (MS) patients, where the ratio of relapse rates is a natural choice of
the treatment effect, we propose to estimate the conditional average treatment effect (CATE) as the ratio
of expected potential outcomes, and derive a doubly robust estimator of this CATE in a semiparametric
model of treatment-covariate interactions. We also provide a validation procedure to check the quality
of the estimator on an independent sample. We conduct simulations to demonstrate the finite sample
performance of the proposed methods, and illustrate their advantages on real data by examining the
treatment effect of dimethyl fumarate compared to teriflunomide in MS patients. Supplementary materials
for this article are available online.
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1. Introduction

Recently, interest in recommending tailored preventative inter-
ventions or treatments to patients in clinical practice has
prompted investigating the conditional average treatment effect
(CATE) from data. Knowledge of the CATE as the contrast
between the expected outcome under different interventions
conditional on covariate levels would allow clinicians to under-
stand how much a patient would benefit from a particular
intervention based on their covariates. The primary statistical
objective is to estimate these CATEs by examining treatment-
covariate interactions (Tian et al. 2014).

The small sample size of trials is one of the biggest obstacles
in such analyses. Most randomized clinical trials are designed
to study the average treatment effect (ATE), rather than the
CATE. Furthermore, to verify CATE estimates or high value
subgroup of patients for whom the treatment is most effec-
tive, researchers use sample splitting (Athey and Imbens 2016)
or, ideally, independent external validation (Basu et al. 2017)
to account for the exploratory nature and the overfitting ten-
dency of relevant statistical analyses, which further shrinks
the available sample size. One important alternative is to use
observational data from real world practice. Observational data
often contain more samples, have broader target patient pop-
ulations, and if collected from clinical practice, better rep-
resent realistic clinical conditions. However, patients receiv-
ing the treatment of interest and those receiving alternatives
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may be systematically different in observational data, which
introduces new challenges in data analysis (Imbens and Rubin
2015).

Let Y(1) be the outcome if the unit were given treatment r =
1, and Y(0) be the outcome if given treatment r = 0. In this
work, we study the estimation and validation of the ratio-based
CATE,

D(z) = E[Y(1)|Z = z]
E[Y(0)|Z = z] ,

which targets the ratio of expected outcomes under different
interventions. Our motivation is the study of differences in
the effect of treatments on relapse in multiple sclerosis (MS)
patients, using observational data from the NeuroTransData
(NTD) registry (described below). For repeated events such as
MS relapses, it is natural to look at the ratio of relapse rates
under different potential treatments, as it is a relative measure
of effectiveness.

We provide a general framework for the estimation and
validation of such a ratio-based CATE score. We develop a
doubly robust method for estimating the treatment contrast
D(z) in the semiparametric model where D(z) = exp(δ�z),
but the conditional means, μr(z) = E[Y(r) | Z = z], and
propensity score, πr(z) = P(R = r | Z = z), are in
nonparametric models. This method has advantageous statisti-
cal properties, such as Neyman orthogonality (Chernozhukov
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et al. 2018), which, along with our simulation and experi-
mental evidence, justify the use of machine learning methods
for nuisance parameter estimation in the observational data.
We provide another method for estimating the treatment con-
trast by adjusting per-arm regression analyses for confound-
ing, and demonstrate via simulation that it often performs as
well in practice. Both methods have the appealing property
that when there is no treatment effect ratio heterogeneity, they
will infer that D(z) is constant, even if the regression model
is misspecified. Finally, we provide a method for validating
the effectiveness of the learned CATE score in a statistically
independent validation sample, and use this to compare the
scores learned via different methods on the MS observational
data.

1.1. A Motivating Example

The NTD MS registry includes about 25,000 patients with MS,
which represents about 15% of all MS patients in Germany. It
includes demographic, clinical history, patient related outcomes
and clinical variables captured in real time during clinical visits.
The focus of the analysis is to estimate the CATE of terifluno-
mide (TERI, n = 1050) compared with dimethyl fumarate
(DMF, n = 1741) and stratify the patient population for tailored
treatment recommendation. The outcome of the primary inter-
est is the number of relapses per unit time; the average treatment
effect is measured by the ratio of the expected relapse rate under
TERI versus that under DMF. The ratio is important, because
it better contextualizes the value of the treatment for these
patients. Preventing 1 relapse per decade is more noticeable
when the baseline is 1 relapse every 5 years than 1 relapse every
year.

Three questions arise when trying to analyze CATEs in the
NTD registry:

1. Can we use the ratio rather than the difference in expected
outcomes to measure the treatment effect?

2. How do we adjust for differences in baseline covariates (con-
founders) between two treatment groups, and how do these
affect estimation of the CATE?

3. How do we validate our CATE model based on observational
data and will the resulting method provide a useful measure
of the quality of the estimated CATE score?

The purpose of this article is to answer these questions and pro-
vide a statistical methodology for estimation and validation of
the ratio-based CATE, based on the described semiparametric
model.

1.2. Related Approaches

The estimation of the absolute difference in expectations of
potential outcomes as the CATE, that is, E(Y(1) −Y(0) | Z = z),
using observational data has been studied extensively in the
literature (Green and Kern 2012; Xie, Brand, and Jann 2012;
Lu et al. 2018; Wager and Athey 2018; Athey, Tibshirani, and
Wager 2019; Künzel et al. 2019; Nie and Wager 2019). Recently,
Powers et al. (2018) and Wendling et al. (2018) compared a
number of approaches for learning this function. The basic idea

is to either estimate the CATE based on separately estimated
E(Y(r) | Z = z), r = 0, 1, or learn directly using modified
outcomes. However, in some settings, the absolute difference in
potential outcomes is not the best measure of treatment effect.
For example, if the ratio-based CATE, D(z), is constant for all z,
but E[Y(0)|Z = z] varies with z, then there will appear to be sig-
nificant treatment effect heterogeneity measured by the absolute
difference E[Y(1) − Y(0)|Z = z], which may not be of particular
interest. In this work, we focus on estimating the ratio-based
CATE, that is, the ratio of the conditional expectation of the
potential outcomes given the baseline covariates. It is natural
to consider applying the methodology for absolute differences
to the log-transformed outcomes. However, for counting pro-
cesses where ratio-based measures are most natural, there is a
nonzero probability that the observed outcome is zero, making
E[log(Y(r)) | Z = z] infinite. On the other hand, our contrast
D(z) is well-defined whenever μ0(z) > 0.

In the context of binary outcomes, the ratio-based CATE
(or ratio-based ATE) is known as the risk ratio. Robins and
Rotnitzky (2001) showed that in a generalized linear model,
the identity link function (corresponding to the absolute risk
difference) and the log link function (corresponding to the
risk ratio) are the only link functions that admit doubly robust
estimators of the constant treatment effect. Given the extensive
literature on CATE estimation with absolute differences, our
work on ratio-based CATE estimation is a timely contribution.
Dukes and Vansteelandt (2018) studied G-estimation of the
risk ratio in the parametric setting, and demonstrated certain
double robustness of the method. Van der Laan and Rose (2011)
showed that the related targeted maximum likelihood estima-
tor for the risk ratio also satisfies double robustness. In this
article, we demonstrate that the contrast regression posed is
doubly robust in the discussed semiparametric model and has
the Neyman orthogonality property, which justifies the use of
a wide class of nonparametric and machine learning methods
for fitting the outcome and propensity score models in our
method. Furthermore, the methodology and estimating equa-
tion used in Van der Laan and Rose (2011) is optimized for
binary outcomes, whereas our method is optimized for count
data.

The outcome weighted learning (OWL) is another class of
methods for developing precision medicine (Zhao et al. 2012,
2014; Chen et al. 2017; Zhou et al. 2017). OWL methods find
a decision boundary in the covariate space to classify patients
into those with a treatment benefit {z | D(z) < 1} or
harm {z | D(z) > 1}, if Y represents undesirable events.
The OWL method and its variations convert the original task
into a binary classification problem and directly target the
decision boundary, bypassing the need to estimate the CATE
(Zhang et al. 2012). In contrast, the regression approach above
attempts to directly estimate the magnitude of the benefit, and
then identify the high value subgroup of patients accordingly
(Cai et al. 2010; Foster, Taylor, and Ruberg 2011; Zhao et al.
2013). The OWL approach avoids the more difficult task, but
also fails to yield information about the size of the treatment
benefit for individual patient. A good estimator of the CATE
ensures a good ATE within the subgroup consisting of patients
with the largest CATEs, thus having priority of receiving the
treatment. In addition, we may also directly recommend the
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treatment to patients whose estimated CATE outweighs the
associated cost, which can also be patient-dependent. Therefore,
in this article, we focus on the more general question of directly
estimating the CATE rather than a binary recommendation
rule.

For data from a randomized clinical trial, Zhao et al. (2013)
proposed the following approach to estimate and validate CATE.
The method consists of two main steps:

1. In the training set:

• Fit separate regression models μ̂r(z) ≈ E[Y(r)|R = r, Z =
z] for the potential outcomes in the treatment (r = 1) and
control (r = 0) arms.

• Estimate the CATE by D̂(z) = μ̂1(z) − μ̂0(z).

2. In the validation set:

• Estimate AD(c) = E
{

Y(1) − Y(0) | D̂(Z) ≥ c
}

, the ATE
for a subgroup of patients {z | D̂(z) ≥ c}, and denote the
resulting estimator by ÂD(c).

• Draw the validation curve q �→ ÂD{Ĥ−1(1 − q)}, where
q ∈ [0, 1) and Ĥ(·) is the empirical cumulative distribu-
tion function of D̂(Z). This curve graphically represents
the relationship between the proportion of patients q in
the subgroup with the CATE score above Ĥ−1(1 − q) and
the estimated ATE in that subgroup.

• Observe the slope of ÂD{Ĥ−1(1 − q)}, which reflects the
quality of the scoring system D̂(z) in ranking the patients
according to their estimated CATE, D̂(z).

In this article, we extend the sequence of training and valida-
tion steps by Zhao et al. (2013) to the ratio-based CATE with
observational data.

2. Method

The standard regression model for the number of relapses in
terms of the baseline covariates is the Poisson or negative bino-
mial regression by treatment arm:

E(Y(r) | Z, R = r) = exp(β�
r Z̃), r = 0, 1, (1)

where Z̃ = (1, Z�)� is a d + 1 dimensional covariate vector, R
is the binary indicator of the treatment received, and Y(r) is the
potential number of relapses if the patient received the treatment
r ∈ {0, 1} or the ratio of the number relapses to an exposure
time. We only observe Y(r) when R = r, but we are interested
in E[Y(r) | Z = z], the average outcome over all individuals
with covariate z, if they had been prescribed treatment r. This
creates a causal-missing data problem. In this work, we make the
unconfoundedness assumption (Imbens and Rubin 2015) that
identifies the relapse rate:

{Y(1), Y(0)}⊥⊥R | Z. (2)

This implies that E(Y | Z, R = r) = E(Y(r) | Z, R = r) =
E(Y(r) | Z).

Our goal is to model the effect of the treatment on the relapse
rate. We assume that the follow up time is the same for all
patients. Otherwise, if unconfoundedness holds with respect

to the follow up time, we may replace the outcome by the
number of relapses divided by the exposure time. Under the
above model, the ratio of the expected relapse rates

D(z) = E(Y(1)|Z = z)
E(Y(0)|Z = z)

(3)

is a natural measure of the CATE for the relapse rate that is
insensitive to differences in exposure time between patients. We
can estimate βr by applying standard Poisson or negative bino-
mial regression methods to the observed data in each arm to get
the estimator β̂r . With the estimated regression coefficients β̂0
and β̂1, let

μ̂r(z) = exp{β̂�
r z̃}

be an estimator of the relapse rate under treatment r ∈ {0, 1}. A
simple estimate of the CATE under model (1) is

D̂(z) = μ̂1(z)
μ̂0(z)

= exp{(β̂1 − β̂0)
�̃z}. (4)

2.1. Confounding Effect on Estimating the CATE

If the regression models for Y given Z and the treatment assign-
ment R are correctly specified, then β̂r will converge to the true
regression coefficient as the sample size increases regardless of
the underlying distribution of Z in each arm of the study. In
practice, these statistical models may be misspecified and only
serve as working models approximating the true relationship
between outcomes and covariates. In such a case, the estimated
regression coefficients may converge to limits that introduce
spurious predicted treatment heterogeneity.

The following toy example illustrates this phenomenon.
Assume that Y(r) | Z = z follows a Poisson distribution with
a rate of z2 in both arms; therefore, D(z) = 1. To introduce
confounding, assume that Z | R = r ∼ N{(r − 0.5), 1}, r = 0, 1.
When fitting a misspecified Poisson regression model

E(Y|Z = z, R = r) = exp(β�
r z̃)

in two arms separately, the regression coefficient of Z is β1 =
(−0.5, 0.8)� in arm r = 1 and β0 = (−0.5, −0.8)� in arm
r = 0. This is not surprising, because 70% of the Zi in arm 1 are
positive, where the quadratic function is increasing, inducing
a positive association between Y and Z, and 70% of the Zi
in arm 0 are negative in arm 0, where the quadratic function
in decreasing, inducing a negative association. Therefore, the
estimated CATE score D̂(z) = exp{(β̂1 − β̂0)

�̃z} ≈ exp(1.6z)
would suggest that the between group rate ratio increases with
the value of z, while in fact it is a constant.

This simple example shows that D̂(z) estimated from mis-
specified regression models may create spurious treatment-
covariate interactions in observational studies. Therefore, the
construction of the CATE score D̂(z) should adjust for the
covariates imbalance to avoid falsely demonstrating treatment
effect heterogeneity due to confounding.
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2.2. Training

In this section, we propose methodologies for estimating D(z)
using observational training data. First, we show how the
parameters of the semiparametric model specifying that D(z) =
exp(δ�

0 z̃) are identified, and use this to develop a doubly robust
method that can be used with machine learning estimates of the
nuisance parameters and provide conditions that allow valid sta-
tistical inference. Then, we provide an approach based on fitting
separate regressions for each treatment arm after adjusting for
confounding effect. This allows interpretation of the regression
models in each arm , in the same way as fitting regression models
to each arm of a randomized clinical trial. While the estimate
of δ0 from the latter method may be biased, we show that it is
consistent when there is no treatment heterogeneity.

2.2.1. Contrast Regression Approach
While motivated by the Poisson regression model, the CATE
model

D(z) = exp(δ�
0 z̃)

arises from a more general semiparametric model that we will
study in this section. Specifically, we model the conditional
expectation of the potential outcomes μr(z) with the semipara-
metric regression model

E(Y(r)|Z = z) = exp
(

rδ�
0 z̃
)

μ0(z), (5)

where μ0(z) is a unknown, measurable, and nonnegative func-
tion in some nonparametric function class. We assume that the
propensity score πr(z) is unknown, but is also in a nonparamet-
ric function class. This model represents the class of distribu-
tions for which D(z) depends on z through δ�

0 z, and thus our
goal is to estimate δ0. We provide a doubly robust estimator of
δ0 and discuss assumptions under which this estimator is

√
n-

consistent.
If Y(1) and Y(0) were both observed, then δ0 is the solution to

E
[

w(Z, δ)Z̃
{

Y(1) − exp(δ�Z̃)Y(0)
}]

= 0, (6)

because applying the tower property of conditional
expectations to (6) gives the equivalent estimating equation
E[w(Z, δ)̃Z{μ1(Z) − exp(δ�Z̃)μ0(Z)}] = 0, where w(z, δ) > 0
is a given weight function. The solution is unique in any
compact set � containing δ0, as long as Z̃ does not belong to a d
or lower dimensional hyperplane and w(z, δ) is bounded above
and below, for all δ ∈ � and z. Like many causal inference
and missing data problems, there are a variety of ways to
develop estimating equations that are equivalent to (6) under
condition (2), involving imputation with the mean functions
μr(z) or inverse probability weighting using the propensity
πr(z). Because the nuisance parameters μr(z) and πr(z) are
rarely known in practice, operationalizing these estimators
depends on estimating the nuisance parameters.

Therefore, we follow the approach advocated by Robins and
Rotnitzky (2001) for developing doubly robust approaches for
semiparametric models. Our estimator is closely related to the
generalized linear model with the logarithmic link function
presented in their paper, and the doubly robust estimator of the
semiparametric risk ratio model presented in Van der Laan and

Rose (2011). Specifically, for any candidate nuisance parameters
μ : Rd → R for the baseline mean (that will hopefully
approximate μ0) and π : Rd → [0, 1] for the propensity score
(that will approximate π1(z)) and parameters δ ∈ � ⊂ Rd+1,
we consider the estimating function

m(G; δ, μ, π) = Z̃
{1 − π(Z)}RY − π(Z)(1 − R)Y exp(δ�Z̃)

eδ�Z̃π(Z) + (1 − π(Z))

− Z̃μ(Z) exp(δ�Z̃)
R − π(Z)

eδ�Z̃π(Z) + (1 − π(Z))
,

where G = (Y , R, Z�)�.
If the propensity score is known, then substituting π1 for π

gives the population estimating function

E [m(G; δ, μ, π1)] = E
[

Z̃w1(Z; δ, π1)
{
μ1(Z) − μ0(Z)eδ�Z̃

}]
,

with the weight function

w1(z; δ, π) = π(z)(1 − π(z))
eδ� z̃π(z) + 1 − π(z)

,

and δ0 is a root of the corresponding estimating equation, for
any bounded choice of μ. In Section 1 of the supplementary
materials, we show that this weight function is optimal in min-
imizing the variance of the resulting estimator when Y(r) | Z =
z follows a Poisson distribution with rate μr(z) and with the
correct propensity score model π1(z).

On the other hand, by rewriting the estimating function as

m(G; δ, μ, π)

= Z̃R
{

Y − μ(Z) exp(δ�Z̃)
} 1 − π(Z)

eδ�Z̃π(Z) + (1 − π(Z))

+ Z̃(1 − R) [Y − μ(Z)]
exp(δ�Z̃)π(Z)

eδ�Z̃π(Z) + (1 − π(Z))
,

we observe that if μ0(z) = E(Y(r)|Z = z) is known, then
substituting μ0 for μ gives the population estimating equation

E [m(G; δ, μ0, π)]

= E
[

Z̃w1(Z; δ, π)
{
μ1(Z) − μ0(Z) exp(δ�Z̃)

}]
= 0

for which δ0 is still a root, regardless of the choice of π(z) used.
In practice, neither the propensity score nor the conditional
expectation μ0(z) is known, which motivates the plug-in esti-
mating equation

Sn(δ) = n−1
n∑

i=1
m(Gi; δ, μ̂0, π̂1) = 0,

where Gi = (Yi, Ri, Z�
i )�, μ̂0(z) is an estimator for μ0(z) and

π̂1(z) is an estimator for the propensity score π1(z). If either
μ̂0(z) or π̂1(z) is consistent, then the solution of the estimating
equation is a consistent estimator of δ0.

In Appendix A, we prove that this estimating equation satis-
fies the Neyman orthogonality condition (Chernozhukov et al.
2018). Therefore, using cross-fitting with this estimating equa-
tion allows for general use of machine learning estimators of the
nuisance parameters, while still providing accurate confidence
interval coverage. To compute the cross-fitting estimator δ̂0 of
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δ0, divide data into K nonoverlapping parts of approximately
equal sizes indexed byIk, k = 1, . . . , K. Construct initial regres-
sion estimates μ̂

(−k)
r (z) of μr(z) without using observations in

Ik, and construct estimates π̂
(−k)
1 (z) of the propensity score

π1(z) without using observations in Ik likewise. Then, estimate
δ0 by searching for the root of the estimating equation

S(cf )
n (δ) =n−1

K∑
k=1

∑
i∈Ik

m(Gi; δ, μ̂(−k)
0 , π̂ (−k)

1 ).

The estimator δ̂ is
√

n-consistent and asymptotically normal
under the following sufficient assumptions (Theorem 1).

Assumption 1. (a) Z ∈ Z , a bounded subset of Rd and the
eigenvalues of E[ZZ�] are between λmin > 0 and λmax, (b) μ1(z)
and μ0(z) are strictly positive and bounded onZ , (c) there exists
επ > 0 such that επ ≤ π1(z) ≤ 1 − επ , (d) there exists σL > 0
and σU such that var(Y(r) | z) ∈ [σL, σU ], z ∈ Z , (e) for some
q > 2, E[|Y(r)|q | Z = z] ≤ C < ∞; (f) δ0 is an interior point of
a compact set � ∈ Rd+1; and (g) (μ0, π1) ∈ T , which is a set of
measurable functions and there exist positive constants επ and
εμ such that επ ≤ π(z) ≤ 1 − επ , and εμ ≤ μ(z) ≤ 1/εμ for
any (μ, π) ∈ T .

Assumption 2. There exists n0, επ > 0, and εμ > 0 such that
for all n > n0, (a) επ ≤ π̂(z) ≤ 1 − επ ; (b) εμ ≤ μ̂0(z) ≤ 1/εμ;
(c) ‖μ̂0(z) − μ0(z)‖P,2 + ‖π̂1(z) − π1(z)‖P,2 = oP(n−1/4).

To specify the asymptotic distribution of the estimator δ̂

under aforementioned assumptions, let

ŵ(−k)(δ, Zi) = eδ�Z̃i π̂
(−k)
1 (Zi)π̂

(−k)
0 (Zi)[

eδ�Z̃i π̂
(−k)
1 (Zi) + π̂

(−k)
0 (Zi)

]2 ,

Â(δ) = n−1
K∑

k=1

∑
i∈Ik

Z̃iZ̃�
i ŵ(−k)(δ, Zi)

{
Yi + μ̂

(−k)
0 (Zi)

π̂
(−k)
1 (Zi)

(Ri − π̂
(−k)
1 (Zi))

}

= n−1
K∑

k=1

∑
i∈Ik

Z̃iZ̃�
i ŵ(−k)(δ, Zi)

[
RiYi + π̂

(−k)
0 (Zi)

π̂
(−k)
1 (Zi)

μ̂
(−k)
0 Ri

+ (1 − Ri){Yi − μ̂
(−k)
0 (Zi)}

]
,

and

B̂(δ) =n−1
K∑

k=1

∑
i∈Ik

Z̃iZ̃�
i

⎛⎝Ri

[
Yi − eδ�Z̃i μ̂

(−k)
0 (Zi)

]
eδ�Z̃i π̂

(−k)
1 (Zi) + π̂

(−k)
0 (Zi)

π̂
(−k)
0 (Zi)

−(1 − Ri)

[
Yi − μ̂

(−k)
0 (Zi)

]
eδ�Z̃i

eδ�Z̃i π̂
(−k)
1 (Zi) + π̂

(−k)
0 (Zi)

π̂
(−k)
1 (Zi)

⎞⎠2

.

Then, applying Theorem 3.3 from Chernozhukov et al. (2018)
under Assumptions 1 and 2 gives the following result:

Theorem 1. Let δ̂ solve S(cf )
n (δ) = 0. Under Assump-

tions 1 and 2,
√

n(̂δ−δ0) converges weakly to a mean zero Gaus-
sian distribution, whose variance can be consistently estimated
by

Â(̂δ)−1B̂(̂δ)Â(̂δ)−1.

See Appendix A for proof. Assumption 1 provides important
regularity conditions that ensure finite, estimable parameters
and nuisance parameters, and a non-degenerate asymptotic
variance. Assumption 2 requires certain convergence rate for
μ̂0(·) and π̂1(·) in estimating μ0(·) and π1(·), respectively.
Under appropriate smoothness conditions for μ0(z) and π1(z),
there are multiple nonparametric estimators that achieve the
required accuracy; see Chernozhukov et al. (2018) for a review
of these estimators and their connection to cross-fitting esti-
mators. The proposed estimating equation can be solved via
Newton–Raphson method. Although we cannot guarantee that
the derivative matrix Â(δ) is positive definite in finite samples,
its limit is positive definite, with a consistent estimate of either
the propensity score or the main effect μ0(z). We find good
numerical convergence in practice, when the sample size is
adequately large.

Remark 1. Constructing estimating equations S(cf )
n (δ) based

on different random partitions of the data and averaging the
resulting solutions as the final estimator reduces the Monte
Carlo variation due to randomly splitting data into K parts.
Chernozhukov et al. (2018) showed that this estimator is asymp-
totically equivalent to δ̂ analyzed above.

Remark 2. By comparing the conditional means to the baseline
of μ1(z), the semiparametric regression model (5) is equivalent
to

E
[

Y(r) | Z = z
]

= exp(−rδ�z̃)μ1(z),

and a similar analysis to the above gives a set of symmetric esti-
mating equations in terms of nuisance parameters μ1 and π1. In
Section 2 of the supplementary materials, we provide procedure
based on combining these symmetric estimating equations.

2.2.2. Two Regressions Approach
Returning to the misspecified regression from Section 2.1, recall
that we were interested in ensuring that a CATE estimator will
not introduce spurious heterogeneity due to confounding. If the
data are from an RCT, so that R⊥⊥{Z, Y(r)}, then

E
[

Z̃i
{
μr(Zi) − exp(β�Z̃i)

}
| R = r

]
= E

[
Z̃i
{
μr(Zi) − exp(β�Z̃i)

}] �= sr(β).

Now, assume that there is no heterogeneity, so that

D(z) = exp(d0), (7)

holds. Even though the regression may be misspecified, the solu-
tions β∗

r of the estimating equations sr(β) = 0 in the two arms
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will satisfy β∗
1 − β∗

0 = (d0, 0, . . . , 0)�, and thus, the estimated
CATE score converges to D(z) = exp{(β∗

1 − β∗
0 )�̃z} = exp(d0)

in probability. This correctly suggests that there is no treatment
effect heterogeneity even under misspecified regression models.

We propose an approach to correct for the confounding in
observational data so that our estimator of the CATE will pro-
vide results as if estimated from a randomized trial, which avoids
the spurious treatment effect heterogeneity from misspecified
regression models. Specifically, this approach “recovers” fitting
a simple regression model in both arms of an RCT, while viewing
the regression model as a working model approximating the
association of interest, and fitting the regression model as if the
potential outcomes and covariates are observed in the entire
cohort. Generally, this approach can produce biased estimate,
when δ0 �= 0 but model (5) is correctly specified. However, in
simulation and on the real data from the NTD registry, we find
that it performs well compared to other methods.

Constructing empirical versions of the estimating equations
sr(β) = 0 is not possible from the observed data, because Y(r)

is only observed when R = r. Under the unconfoundedness
assumption (2), we can apply methods developed to adjust for
confounding when estimating the ATE to construct appropriate
empirical estimating equations. To this end, let π̂r(z) be an
estimator for the propensity score πr(z) = P(R = r|Z = z),
and

Ŵi(r) = r
Ri

π̂1(Zi)
+ (1 − r)

1 − Ri
π̂0(Zi)

.

Then, we can use the doubly robust estimating equation

Sr(β) = n−1
n∑

i=1
Z̃i
{
μ̃r(Zi) − exp(β�

r Z̃i)
}

= 0,

where μ̃r(z) is a special estimator of μr(z) constructed via the
following steps:

1. Construct an initial nonparametric (or otherwise more flex-
ible parametric or semiparametric) prediction for Y(r)

i given
Zi = z via the estimated conditional expectation E(Y(r)|Z =
z), denoted by μ̂r(z);

2. Solve the weighted estimating equations

n−1
n∑

i=1
Ŵi(r)̃Zi

(
Yi − exp

[
αr × log{μ̂r(Zi)} + γ �

r Z̃i
])

= 0, (8)

r = 0, 1; (9)

and denote the roots by (̂αr , γ̂ �
r )�, r = 0, 1.

3. Let μ̃r(z) = exp
{
α̂r × log(μ̂r(Zi)) + γ̂ �

r Z̃i
}

be the “cali-
brated” outcome predictions used in the estimating equation
Sr(β) = 0.

This estimator is a doubly robust estimator: if either μ̂r(·) is a
consistent estimator of μr(·) or π̂r(·) is a consistent estimator of
πr(·), then the solution to the augmented estimating equation
converges to βr , the solution of sr(β) = 0 under (2) and mild
regularity conditions (Bang and Robins 2005). The key obser-
vation is that if the propensity score is consistently estimated,
Equation (9) ensures that

E
[

Z̃{Y(r) − μ̃r(Z)} | μ̃r(·)
]

= op(1).

If we suspect that the Poisson regression (1) is misspecified,
the initial prediction rule should be based a more flexible model
than the Poisson regression that better approximates the true
model. For example, we may fit a regression model

E(Y|Z, R = r) = exp{η�
r B(Z)}, r = 0, 1,

where B(z) is a rich set of basis functions capturing the complex
nonlinear relationship between Y and Z. μ̂r(z) = exp{̂η�

r B(z)}
can then be the initial prediction rule, where η̂r is the estimated
regression coefficient. Alternatively, we may employ machine
learning methods such as random forest or boosting to gen-
erate μ̂r(z) (Friedman, Hastie, and Tibshirani 2000; Breiman
2001). We can improve the performance of the estimator by
cross-fitting, which removes the dependence between μ̂r(Zi)
and (Yi, Zi) induced by potential overfitting in constructing
μ̂r(z). Specifically, β̂r is the solution to the estimating equation
S(cf )

r (β) = 0, where

S(cf )
r (β) = n−1

K∑
k=1

∑
i∈Ik

Z̃i

{
exp
[
α̂r × log{μ̂(−k)

r (Zi)} + γ̂ �
r Z̃i

]
− exp(β�

r Z̃i)

}
,

γ̂r and α̂r are the roots of the estimating equation

n−1
K∑

k=1

∑
i∈Ik

Ŵ(−k)
i (r)̃Zi

(
Yi − exp

[
αr × log{μ̂(−k)

r (Zi)}

+ γ �
r Z̃i

])
= 0,

data are divided into K nonoverlapping parts of approximately
equal sizes indexed by Ik, k = 1, . . . , K, μ̂

(−k)
r (z) and π̂

(−k)
r (z)

are constructed using observations not in Ik, and Ŵ(−k)
i (r) is

the analog of Ŵi(r) with π̂
(−k)
r (z) plugged in. The estimated

CATE score is thus

D̂1(z) = exp
{
(β̂1 − β̂0)

�̃z
}

.

Remark 3. One natural question is that if μ̃r(z), a high quality
prediction rule for Y(r)

i |Zi = z, is already available, why do we
need to reconstruct an estimator exp{β̂�

r z̃} under a misspecified
regression model? The initial prediction rule may be a complex
function of z; therefore, it is not as transparent as that based on a
simple regression model for clinical interpretation and practical
use. We can view the regression-based CATE score as a “projec-
tion” of the initial prediction μ̃r(z) to a simpler functional space.
This is in the same spirit of simplifying the estimated CATE by
a classification tree (Foster, Taylor, and Ruberg 2011; Loh, He,
and Man 2015).

2.3. Validation

For estimating and validating CATE models, Zhao et al. (2013)
considered the absolute difference, E(Y(1) − Y(0) | Z = z)
and E(Y(1) − Y(0)|D(Z) ≥ c). In such a case, the ATE in {z |
D(z) ≥ c}, is a monotone increasing function of c. We generalize
the method by Zhao et al. (2013) to address confounding due to



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 7

differences in baseline covariates between two treatment groups,
and validate CATE estimators of the ratio of expected potential
outcomes.

Let the ratio of average treatment effects among the subgroup
of patients with the highest true CATE {z : D(z) ≥ c} be

ADtrue(c) = E{Y(1) | D(z) ≥ c}
E{Y(0) | D(z) ≥ c} .

Because this subgroup is selected based on the true treatment
effect ratios, ADtrue(c) is monotone increasing in c. Instead, if
we order patients by the estimated CATE score D̂(z) and let

AD(c) = E{Y(1) | D̂(z) ≥ c}
E{Y(0) | D̂(z) ≥ c} ,

then we would expect that when D̂(z) is a good estimate of
D(z), AD(c) will be monotone increasing; the trend of AD(c) is
a natural measure of the quality of the CATE score. To estimate
the ATE in the subgroup of patients {z | D̂(z) ≥ c}, we show how
to adjust for confounding between two treatment arms using
propensity score, regression or doubly robust estimators (Bang
and Robins 2005; Kang and Schafer 2007).

The following theorem ensures that for CATE measured
by the ratio of μr(z), as in the NTD example, AD(c) is also
monotone increasing.

Theorem 2. For nonnegative potential outcomes Y(r), r = 0, 1,
Let

D(z) = E(Y(1) | Z = z)
E(Y(0) | Z = z)

and

AD(c) = E(Y(1) | D(z) ≥ c)
E(Y(0) | D(z) ≥ c)

.

If all involved expectations are finite and 0 < D(Z) < ∞ for
almost every Z, AD(c) is monotone increasing in c, and AD(c) ≥
c for any c.

See Section 3 of the supplementary materials for detailed
proof. By Theorem 2, if we measure treatment effects by the
ratio, we still can evaluate the quality of the constructed CATE
scoring system by examining the “slope” of the curve ÂD(c).
Because, AD(c) ≥ c, for any c, if D(z) is the true CATE, the ATE
in the subgroup consisting of patients with promising CATEs
tends to be promising as well.

Remark 4. The monotonicity of AD(c) depends on the metric
used to measure the treatment effect. For example, AD(c) is not
necessarily monotone increasing if the treatment effect is mea-
sured by odds ratio (OR) for binary outcomes. In Section 4 of the
supplementary materials, we provide a simple example where
the largest marginal OR is not in the subgroup of patients with
highest conditional OR. Generally, the ATE in a subgroup of
patients with the largest CATE may not be large if the treatment
effect is measured by a contrast other than the ratio or difference.

To estimate AD(c) using observational data, we need to
account for potential imbalances in baseline covariates between
two arms, since the treatment assignment is not randomized.

There are various ways to estimate the ATE in an observa-
tional study and all involve certain model assumptions. To
construct a doubly robust approach, suppose that the validation
set consists of m, independent identically distributed copies of
(YV , RV , ZV),

{
(YV

i , RV
i , ZV

i ), i = 1, . . . , m
}

, where the super-
script V indicates membership in the validation set. Then,
estimate AD(c) as follows: first estimate μr(z) by μ̂rc(z) in the
subgroup of patients {zV | D̂(zV) ≥ c}; and then estimate
E(Y(r) | D̂(ZV) ≥ c) by

μ̂r(c) = m−1
c

∑
D̂(ZV

i )≥c

[
μ̂cr(ZV

i ) + ŴV
i (r, c)

{
YV

i − μ̂cr(ZV
i )
}]

,

where

ŴV
i (r, c) = r

RV
i

π̂c1(ZV
i )

+ (1 − r)
1 − RV

i
π̂c0(ZV

i )
,

π̂cr(z) is the estimator for πr(z) in the subgroup {zV | D̂(zV) ≥
c} from the validation set, and mc is the subgroup size. Finally,
let ÂD(c) be the simple plug-in estimator μ̂1(c)/μ̂0(c). This
estimator is consistent for AD(c), if either the propensity score
or the main effect μr(z) is consistently estimated within the
subgroup. One advantage of this approach is that it provides
estimates of μr(z), r = 0, 1, which allows interpretation of the
treatment effect.

Remark 5. When the outcome of interest is time to a clinical
event, such as death or relapse, the same method can be used to
approximate and validate CATE, where the treatment effect is
defined via the ratio of restricted mean time lost within a given
time window, that is,

D(z) = E{τ − (T(1) ∧ τ)|Z = z}
E{τ − (T(0) ∧ τ) | Z = z} .

Here, τ > 0 is a chosen constant (Uno et al. 2014) and T(j) is the
event time of interest under treatment j. When the event rate is
low, this ratio is similar to the hazard ratio and can be approxi-
mated by a multiplicative model (5). The detailed extension can
be found in Section 5 of the supplementary materials.

3. Numerical Simulation

In this section, we conduct a simulation study to investigate
the finite sample performance of the proposed method. The
simulation design and discussion of the results are detailed
below. Overall, these simulations show that when the ratio-
based CATE is well-approximated by D(z) = exp(δ�̃z) and
the propensity score is correctly specified, the contrast regres-
sion and two regression approaches perform well. The contrast
regression outperforms the two regression approach when the
log-transformed CATE is well approximated by a linear function
of z, but the Poisson model for the baseline rate μ0(z) is mis-
specified. When the log-transformed CATE is highly nonlinear,
the increased flexibility of boosting and other machine learning
methods is advantageous; the ratio of the predictions from
boosting outperforms the proposed method.

In the simulations, the covariate Z ∈ R10 is generated
from a multivariate Gaussian, where the first 5 components are
independent and the last 5 components are correlated with a
common correlation coefficient of 0.5 but independent of the
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first 5 components. The marginal distributions of the entries of
Z are standard Gaussians. To ensure that the propensity score
is bounded away from 0 and 1, any Zi greater than 2 (or less
than −2) is replaced by 2 (or −2). The treatment assignment
R | Z = z is generated from a Bernoulli distribution with a
probability of π1(z) = {

1 + exp(z1 + 0.5z2 − 0.5z6)
}−1 . With

a slight abuse of notation, zi stands for the ith component of
the covariate vector rather than the covariate vector of the ith
patient in this section.

We simulate a random follow up time F(r) | Z = z from
a uniform distribution U[0, 0.75] (discussion of incorporating
follow up times is provided in the supplementary materials), and
simulate the potential outcomes Y(r) | F(r) = f , Z = z from
a Poisson distribution Pois{μr(z)f }, using the mean functions
μr(z) described below, to illustrate a number of settings. The
four different settings are:

1. Well-specified contrast

D(z) = exp {−0.1 + 0.25(z1 + z6)} ,
μ1(z) = exp { 0.85 + 0.25(z1 + z6) + 1.5(|z1| − |z6|)}
μ0(z) = exp { 0.95 + 1.5(|z1| − |z6|)} ;

2. Well-specified Poisson

D(z) = exp {0.375 + 0.125z1 + 0.05z2 − 0.25z6}
μ1(z) = exp {0.925 + 0.125z1 + 0.30z2 + 0.25z6}
μ0(z) = exp {0.550 + 0.25z2 + 0.50z6} ;

3. Mild contrast misspecification

D(z) = exp { 0.75 + 0.125z1 + 0.05|z2 + 0.5| − 0.25z6}
μ1(z) = exp

{
0.50 + 0.125z1 + 0.30|z2 + 0.5| + 0.25z6

+ 0.5(|z1| + |z6|)
}

μ0(z) = exp
{

− 0.25 + 0.25|z2 + 0.5| + 0.50z6

+ 0.5(|z1| + |z6|)
}

;

4. Large contrast misspecification

D(z) = exp
{

0.915 − 0.25|z1 + z6 + 1| − 0.6|z2

+ 0.5| − 0.25z6
}

μ1(z) = exp
{

1.235 − 0.125|z1 + z6 + 1| − 0.3|z2

+ 0.5| − 0.125z6 + 0.5(|z1| + |z6|)
}

μ0(z) = exp
{

0.320 + 0.125|z1 + z6 + 1| + 0.3|z2 + 0.5|
+ 0.125z6 + 0.5(|z1| + |z6|)

}
.

The proposed contrast regression is the most valuable for the
well-specified contrast setting, where the Poisson regression is
misspecified, but the underlying log-transformed CATE is still
a linear combination of baseline covariates satisfying model
(5). We expect that the naïve regression approach should work
especially well in the well-specified Poisson setting, but that
the propensity adjusted two regression and contrast regression

approaches should also perform reasonably well. In the remain-
ing two settings, neither the Poisson model for μr(z) nor the
semiparametric model (5) for the CATE is correctly specified.
While the linear approximation is reasonably good in the third
setting, the log-transformed CATE is highly nonlinear in the
fourth setting.

For each simulated dataset, we construct the CATE score
using the following six methods:

1. contrast regression targeting D(z) directly with the doubly
robust adjustment,

2. two regression with the proposed doubly robust adjustment
(the boosting-based estimation of μr(z) serves as the initial
predictor),

3. naïve regression with a Poisson model in each arm,
4. boosting with a regression tree of depth 2 as the a base learner

to estimate μr(z) in each arm separately and taking the ratio
of two estimators,

5. modified outcome (MO) boosting regression according to
Wendling et al. (2018),

6. Bayesian additive regression tree (BART) to estimate μr(z)
and the CATE score taking the difference of two estimators
(Lu et al. 2018).

The propensity score, when used, is always estimated by fit-
ting a standard logistic regression model. We calculated the true
AD{Ĥ−1(1 − q)} and the validation curve, q �→ AD{Ĥ−1(q)},
based on the constructed CATE scores. The steeper the slope
of the curve, the better the performance of the CATE score.
We have also directly calculated the correlation coefficients
between the estimated CATE score and the true CATE (after log-
transformation). After repeating this process 200 times, we sum-
marize the performance of each method based on the median of
the resulting validation curves (Figure 1), where the validation
curve of the true CATE serves as the benchmark. Figure 2 shows
the distribution of the correlation coefficients between the esti-
mated CATE score and the truth. As expected, the contrast
regression outperforms the two regression and other approaches
in ranking the magnitude of CATE in the well-specified con-
trast setting. In most other cases, the CATE estimated by the
two proposed methods have similar concordance with the true
CATE. In the simulation for the well-specified Poisson model,
the naïve regression performs the best, however the boosting
and two proposed methods are only slightly inferior to the naïve
regression. In the large contrast misspecification setting, where
the log-transformed CATE is highly nonlinear, the ratio of the
predictions from boosting outperforms the proposed methods,
suggesting that the increased flexibility of the boosting approach
(or other machine learning method) is advantageous.

In addition, for settings 1 and 2, model (5) is correctly speci-
fied and δ̂ from the contrast regression is a consistent estimator
of δ0. We have also examined the empirical bias and the coverage
level of 95% confidence intervals in estimating δ0 based on
400 replications. The results are summarized in Table 1. The
proposed contrast regression estimator is almost unbiased and
the empirical coverage level of the constructed 95% confidence
interval is close to the nominal level.

We also designed some simulations for survival outcomes,
which can be found in Section 7 of the supplementary materials.
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Figure 1. The ATE in subgroups of patients identified by different CATE scores in four simulation settings including: the true CATE, contrast regression, two regression, naïve
regression, boosting, modified outcome boosting, and Bayesian additive regression trees (BART).

In general, the methods provided here adapt well to survival
outcomes with censoring.

4. Treatments for Multiple Sclerosis

We return to our motivating example–measuring treatment
effect heterogeneity between the TERI and DMF drugs for MS.

As discussed in Section 1.1, one of the primary endpoints of
interest is the relapse rate of severe symptoms of MS. The NTD
registry records observational data of MS patients, including
their treatments, relapses, and covariates over time. Hypoth-
esized heterogeneity may be due to different drug treatment
pathways, leading to different effectiveness across individuals.
Here, we provide an in-depth description of the data, the results
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Figure 2. The distribution of correlation coefficients between the estimated and true CATE in four simulation settings; there are six methods considered from left to right:
contrast regression (dark gray), two regression (light gray), naïve regression, boosting, modified outcome boosting, and Bayesian additive regression trees (BART).

of applying the proposed analyses on these observational data,
and some implications of using the proposed methods to mea-
sure the CATE. Additional analysis and results for the time
to relapse can be found in Section 8 of the supplementary
materials.

4.1. Experimental Design

The NTD registry captured 1050 MS patients receiving TERI
and 1741 patients receiving DMF between January 1, 2009 and
July 1, 2018. Covariates of interest include age, number of prior
treatments, MS duration, prior usage of glatiramer acetate (GA),
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Table 1. Empirical bias and coverage level of the 95% confidence interval in esti-
mating δ0 based on 400 replications under the well-specified contrast and well-
specified Poisson simulation settings.

Well-specified Poisson Well-specified contrast

Covariates Coefficients Bias Coverage Coefficients Bias Coverage

Intercept 0.375 0.005 93.0% −0.10 0.000 92.5%
Z1 0.125 −0.021 93.8% 0.25 −0.013 91.3%
Z2 0.050 −0.009 95.0% 0 −0.007 92.0%
Z3 0 −0.003 94.5% 0 −0.007 95.0%
Z4 0 0.003 93.0% 0 0.003 94.5%
Z5 0 0.005 91.8% 0 0.003 93.5%
Z6 −0.25 0.004 93.8% 0.25 −0.009 94.0%
Z7 0 0.005 92.5% 0 0.006 95.0%
Z8 0 0.000 93.5% 0 −0.001 92.8%
Z9 0 −0.001 94.0% 0 −0.002 95.3%
Z10 0 −0.004 93.0% 0 −0.003 93.5%

prior usage of interferon (IFN), number of relapses in one year
and in two years prior to the index therapy, baseline Expanded
Disability Status Scale (EDSS), and baseline pyramidal EDSS
score. The data contain few missing values, thanks to processes
to manage the definition of minimum datasets, mandatory
data entry fields, and positive missing data confirmation. More
details on the data source and management are available in
Section 9 of the supplementary materials.

We implemented the standard regression, and the two pro-
posed methods to construct the CATE scores approximating the
“individualized” relapse rate ratio. To implement the proposed
procedure, we estimated the baseline relapse rates μr(z) using
boosting with the Poisson likelihood. The base learners are
depth 2 regression trees, and the number of trees is selected
via 5-fold cross-validation. The propensity score is constructed
based on the standard logistic regression model. The proposed
CATE score is based on the average of three replicates of 7-fold
cross-fitting. One advantage of the contrast regression is that the
standard errors can be estimated using the formulas provided in
Section 2.2.1, and so we include these in our results.

We use repeated cross-validation to compare and evaluate the
performance of the CATE scores objectively using the validation
curves described in Section 2.3. To this end, we considered four
CATE scores: a score based on predicted relapse rates using
boosting method, a score based on naïve Poisson regression, and
two scores based on our new proposal with the boosting-based
prediction as the initial prediction. In each iteration, the data
are split into a training set (67%) used to fit the CATE score
and a testing set (33%) used to construct the validation curve.
After repeating this process 50 times, we report the twice median
validation curve for each CATE score in the training (left) and
test (right) sets. We also use the estimated CATE score to split
the patients in the testing set into two group of equal sizes. Then,
we estimate the ratio of average relapse rates in two subgroups
separately.

4.2. Results

Table 2 summarizes the distribution of covariates by treatment
arm. The patients receiving TERI are different from patients
receiving DMF in several key ways. For example, the patients
receiving TERI tend to be older (45 vs. 40), have a longer disease

Table 2. Baseline characteristics of RRMS patients at the initiation of therapy with
DMF and TERI: mean (standard deviation) for continuous covariate and number
(proportion) for binary covariate.

Variable TERI (n = 1050) DMF (n = 1741) p-value

Exposure time (year) 2.11(1.71) 2.17(1.72) 0.603
Age 44.86(10.20) 39.91(10.74) 0.0000
# prior treatments 0.97(0.93) 0.96(0.98) 0.4703
MS duration (year) 8.11(7.64) 6.57(6.60) 0.0000
GA 821(78.2%) 1327(76.2%) 0.246
IFN 502(47.8%) 886(50.9%) 0.118
# relapses (prior year) 0.42(0.60) 0.46(0.65) 0.2032
# relapses (prior 2 years) 0.64(0.84) 0.71(0.90) 0.095
EDSS 2.03(1.51) 1.84(1.50) 0.0006
Pyramidal EDSS 0.92(1.10) 0.77(1.04) 0.0000

Table 3. The estimated weights in constructed CATE scores (TERI vs. DMF).

Ratio of relapse rate

Naïve reg. Two reg. Contrast reg.

Intercept 0.692 0.476 0.670 (0.711)a

Age 0.013 0.013 0.017 (0.013)
# prior treatments −0.303 0.011 −0.088 (0.195)
MS duration (years) 0.022 0.045 0.028 (0.028)
GA −0.584 0.517 −0.700 (0.349)
IFN −0.304 −0.024 −0.185 (0.318)
# relapses (prior year) −0.258 −0.661 −0.811 (0.271)
# relapses (prior two years) 0.191 0.360 0.444 (0.201)
EDSS −0.046 −0.247 −0.233 (0.114)
Pyramidal EDSS 0.006 0.027 −0.004 (0.160)

aThe estimated standard error of the weight.

duration (8.1 years vs. 6.6 years) and have higher EDSS scores
(2.03 vs. 1.84) than those receiving DMF.

In the entire cohort, the estimated ratio of the relapse rates
(TERI vs. DMF) is 1.270 (95% confidence interval (CI): 1.121,
1.439; p < 0.001) using Poisson regression alone. After adjust-
ing for confounding using the doubly robust procedure, the
annual relapse rate is 0.308 for TERI and 0.237 for DMF; the
estimated relapse rate ratio is 1.299 (95% CI: 1.018, 1.658).

Table 3 summarizes the estimated weights in the log-
transformed CATE score for the naïve regression, two regres-
sion, and contrast regression approaches, as well as the estimated
standard errors from the contrast regression. Based on contrast
regression, GA, the number of relapses in the year prior to
the therapy, the number of relapses in two years prior to the
therapy, and baseline EDSS have a statistically significant impact
on the treatment effectiveness at the 0.05 level. These weights
suggest, for example, that patients experiencing more relapses
in the previous two years and has a lower EDSS score tend to
benefit more from DMF, even when looking at the relative ratio
of treatment benefit.

The composition of the CATE score based on the naïve Pois-
son regression is different from that based on two new proposals.
For example, the weight of EDSS from the naïve approach is
substantially smaller than those in new CATE scores. Figure 3
shows a scatterplot of these three CATE scores in the entire
cohort, demonstrating a positive correlation but also ample
differences between the naïve and new CATE scores. On the
other hand, the two new CATE scores are highly concordant.
Comparing the cross-validation performance in Figure 4, the
two proposed CATE scores that adjust for imbalance in baseline
covariates appear to have a similarly superior performance to
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Figure 3. The log-transformed CATE scores based on the standard regression approach and the proposed doubly robust adjustment method: the CATE for the ratio of
relapse rates.

naïve regression and boosting in the testing set, and both suggest
a moderate treatment effect heterogeneity due to the monotone
shape (with nonmonotone noise) of the validation curve.

Using the CATE score from contrast regression to split the
patients in the testing set into two equal groups, the median ratio
of the relapse rates (TERI vs. DMF) is 1.673 in 50% patients
that would benefit most from DMF and 1.113 in remaining
50% patients. Using the CATE score from the two regression
approach gives median ratios of 1.723 and 1.089, respectively.
The distribution of the estimated ratios across different cross-
validation replicates are summarized in Figure 5.

As a cautionary note, this observed difference in treatment
effect may not be adequately stable due to the limited sample size
in the testing set (on average, there are only 465 patients in each
of the two subgroups). However, the results still exhibit signals
for the presence of treatment effect heterogeneity captured by
two proposed approaches.

A important observation is that the estimated treatment
effect heterogeneity does not alter the recommendation of the
treatment, since DMF appears to be superior to TERI in most if
not all of the patients in terms of reducing relapse rate, although
the relative benefit may vary in different subgroups.

5. Discussion

We show that estimation and validation of the ratio-based CATE
benefits from many of the same approaches such as doubly
robust estimation and semiparametric modeling that work well
for the difference-based CATE. We also extend the regression
approach by Zhao et al. (2013) to develop a precision medicine

strategy from observational data. There are three important
messages learned in this practice. First, the metric for the treat-
ment effect has an important impact on the estimation and
validation of the CATE. The treatment effects measured by
the absolute difference and relative ratio both depend on the
outcomes distribution in the control arm in simple ways, such
that that the group of patients with large CATEs also have a large
ATE. This is not necessarily true for treatment effect measured
by odds or hazard ratio, where the ATE and CATE do not always
align. Second, by borrowing appropriate techniques developed
for estimating ATE in causal inference to adjust the standard
estimation procedure, we eliminate the spurious heterogeneity
caused by the imbalance in covariates in regression modeling
for treatment covariates interactions. Lastly, we proposed a set of
methods for estimating the ratio-based CATE, which may result
in very different conclusions in comparison with most current
methods, which target difference-based CATE.

We note that in this work, we have assumed that training and
validation sets follow the same distribution. If the distribution
of the validation set or the target population is different from
that of the training set, the proposed estimation procedures need
to be modified to adjust the distribution of covariates of the
patients in treatment arm r of the training set to match that
of the target population. Otherwise, the same CATE score may
define a different subgroup of patients in the target population,
that is, {z | D̂(z) ≥ c} may be different from {zV | D̂(zV) ≥
c}, so that the ATE observed in the high value subgroup {z |
D̂(z) ≥ c} may not be reproducible. Furthermore, the validity
of all of our results depends on making the unconfoundedness
assumption for causal effects. This is the most important for
CATE validation, which would benefit greatly from being an
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Figure 4. The ATE (relapse rate ratio of TERI vs. DMF) in subgroups of patients based on the CATE scores constructed in the training set (two proposed methods, naïve
regression and boosting) in the NTD registry.

external randomized clinical trial, so that we can estimate the
ATE in the identified high value subgroup without systematic
biases from unmeasured confounding.

Qi et al. (2020) discussed the optimal treatment recommen-
dation in the presence of K > 2 treatments. The proposed
two regression approach can be used to approximate μk(z) =
E(Y(r) | Z = z), k = 0, 1, . . . , K, and select treatments accord-
ingly. The contrast regression can directly estimate Dij(z) =
μi(z)/μj(z) based on the limiting estimating equation:

E
[

w(Z, δ)̃Z
{∏

k�=i
πk(Z)I(R = i)Y

−
∏
k�=j

πk(Z)I(R = j)Y exp(δ�Z̃)

}]
= 0

if Dij(z) = exp(δ�
ij z̃), where πk(z) = P(R = k | Z = z)

and w(z, δij) is a weight function. Appropriate doubly robust

augmentation based on {(I(R = r) − πr(Z), r = 1, . . . , K} may
further improve efficiency. However, the resulting estimators do
not necessarily have the property that Dij(z) = Dil(z)Dlj(z),
which warrants further research.

Appendix A: Proof of Theorem 1

Proof. To prove Theorem 1, it is sufficient to verify that the problem
and assumptions satisfy those of Theorem 3.3 in Chernozhukov et al.
(2018), which we repeat here for the reader’s convenience. Let c0 > 0,
c1 > 0, a > 1, v > 0, s > 0, and q > 2 be finite constants, and let
{δn}n≥1, {n}n≥1, and {τn}n≥1 be some sequence of positive constants
converging to 0. Define the following assumptions (Chernozhukov et
al. 2018, Assumptions 3.3 and 3.4).

Assumption 3. For all n ≥ 3 and P ∈ Pn, (a) E{m(G; δ0, μ0, π1)} = 0,
and � contains a ball of radius c1n−1/2 log n centered at δ0; (b) the
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Figure 5. The cross-validated ATE (relapse rate ratio of TERI vs. DMF) of subgroups of patients identified by different CATE scores (two proposed methods, naïve regression
and boosting) in the NTD registry.

map (δ, μ, π) → E{m(G; δ, μ, π)} is twice continuously Gateaux-
differentiable on � × T ; (c) for all δ ∈ �, 2‖E{m(G; δ, μ0, π1)}‖ ≥
‖J0(δ − δ0)‖ ∧ c0, where J0 is the Jacobian matrix of δ �→
E[m(G; δ, μ0, π1] at δ0; (d) the score m(g; δ, μ, π) obeys the Neyman
orthogonality condition

d
dr

E [m(G, δ0, μ0 + r(μ̄ − μ0), π1 + r(π̄ − π1))]
∣∣∣∣
r=0

= 0,

for any (μ̄, π̄) ∈ T .

Assumption 4. Let K be a fixed integer. For all n ≥ 3 and P ∈ Pn, the
following conditions hold:

(a) Given a random subset I of {1, . . . , n} of size n/K, the nuisance
parameter estimators (μ̂−k

0 , π̂−k
1 )1≤k≤K belong to the realization

set Tn with probability 1 − n, where Tn contains (μ0, π1) and is
constrained by the conditions below;

(b) F1,(μ,π) = {mj(g; δ, μ, π) | j = 1, . . . , d + 1, δ0 ∈ �} is suitably
measurable and its uniform covering entropy obeys

sup
Q

log N(ε‖F1,(μ,π)‖Q,2,F1,(μ,π), ‖ · ‖Q,2) ≤ v log(a/εN)

for εN ∈ (0, 1], where F1,(μ,π) is a measurable envelope for
F1,(μ,π) that satisfies ‖F1,(μ,π)‖P,q ≤ c1;

(c) rn = sup(μ,π)∈Tn,δ0∈� ‖E{m(G; δ, μ, π)} − E{m(G; δ0, μ0,
π0)}‖ ≤ δnτn;

(d) r′n log1/2(1/r′n) ≤ δn, where

r′n = sup
(μ,π)∈Tn,‖δ−δ0‖≤τn

(
E
{
‖m(G; δ, μ, π)

− m(G; δ0, μ0, π0)‖2
})1/2

;
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(e) λn ≤ δnn−1/2, where

λn = sup
r∈(0,1),(μ,π)∈Tn,‖δ−δ0‖≤τn

‖∂2
r E
[
m{G; δ0 + r(δ − δ0),

μ0 + r(μ − μ0), π1 + r(π − π1)}
]‖.

(f) all eigenvalues of the matrix E
[

m(G; δ0, μ0, π1)m�

(G; δ0, μ0, π1)
]

are bounded below by a positive constant.

Theorem 3 (Chernozhukov et al. (2018, Theorem 3.3)). Suppose
that Assumptions 3 and 4 hold. In addition, suppose that δn ≥
n−1/2+1/q log(n) and that n−1/2 log(n) ≤ τn ≤ δn for all n ≥ 1
and a constant q > 2. Then, the DML2 estimator δ̂ concentrates in
a 1/

√
n neighborhood of δ0, and are approximately linear and centered

Gaussian:

√
nσ−1 (̂δ − δ

) = 1√
n

n∑
i=1

ψ̄(Gi) + Op(ρn)
d→ N(0, I),

uniformly over P ∈ Pn, where the size of the remainder term obeys

ρn = n−1/2+1/q log(n) + r′n log1/2(1/r′n) + n1/2λn + n1/2λ′
n,

ψ̄(·) = −σ−1J−1
0 m(·, δ0, μ0, π1) is the influence function, and the

approximate variance is

� = J−1
0 E

[
m(G, δ0, μ0, π1)m(G, δ0, μ0, π1)

�] J−�
0 .

We proceed by verifying the assumptions of Theorem 3. Let P be a
set of measures satisfying Assumption 1 and T be a measurable subset
of the pairs of functions (π , μ) such that for each Q ∈ P , μ ∈ L2(Q),
π ∈ L∞(Q), and επ ≤ π(z) ≤ 1 − επ Q-almost everywhere.

We proved Assumption 3(a) in the main text; see equation (6), by
using the assumption in (5): μ1(z) = μ0(z) exp(δ�

0 z̃), and thus

E[m(G; δ0, μ0)] = E[w(Z, δ0)(μ1(Z) − μ0(Z) exp(δ�
0 Z̃))] = 0.

We will frequently use the fact that for δ ∈ �, Z ∈ Z , and π(z)
satisfying 0 < επ ≤ π(z) ≤ 1 − επ ,

sup
z∈Z ,δ∈�

{exp(δ�z̃)π(z) + 1 − π(z)}−1 ≤ C0 (A.1)

for a constant C0. Applying this with π = π1 by Assumption 1(c), along
with Assumption 1(e) ensures that ∂E[m(G; δ, μ0, π1) | Z = z]/∂δ

and the second derivative have an integrable envelope function, and
therefore, E [m(G; δ, μ0, π1)] is differentiable with respect to δ with
Jacobian

J0(δ) = E

⎛⎜⎝Z̃Z̃� eδ�Z̃iπ1(Z)π0(Z){eδ
�
0 Z̃π1(Z) + π0(Z)}μ0(Z)[

eδ�Z̃π1(Z) + π0(Z)
]2

⎞⎟⎠ ,

which is continuous in δ and positive definite with its smallest eigen-
value uniformly bounded away from zero for δ ∈ �. We can choose a
small open ball centered at δ0, N , such that for any δ ∈ N , |J0(δ) −
J0(δ0)|ij < ε, for all components 1 ≤ i, j ≤ d + 1, where ε is a small
constant to be specified later. By the intermediate value theorem, for
any δ ∈ N , there exists δ̄ ∈ N such that

‖E{m(G; δ, μ0, π1)}‖ = ‖J0(δ̄)(δ − δ0)‖ ≥ ‖J0(δ0)(δ − δ0)‖
− ‖{J0(δ̄) − J0(δ0)}(δ − δ0)‖

≥ ‖J0(δ0)(δ − δ0)‖ − ε(d + 1)‖δ − δ0‖
≥ ‖J0(δ0)(δ − δ0)‖ − ‖J0(δ0)(δ − δ0)‖/2,

if ε ≤ λ0/2(d + 1), where λ0 is the smallest eigenvalue of

J0 = J0(δ0) = E

⎛⎝Z̃Z̃� eδ
�
0 Z̃iπ1(Z)π0(Z)μ0(Z)[
eδ

�
0 Z̃π1(Z) + π0(Z)

]
⎞⎠ .

Therefore, 2‖E{m(G; δ, μ0, π1)}‖ ≥ ‖J0(δ − δ0)‖, for any δ within the
ball. For δ outsideN , let c0 = infδ∈�−N ‖E{m(G; δ, μ0, π1)}‖. c0 > 0
due to the uniform continuity of E{m(G; δ, μ0, π1)} in the compact set
� − N . This verifies Assumption 3(c).

To verify the Gateaux-differentiability of m, note that for δ ∈ �,
(μ, π) ∈ T , (μ + rdμ, π) ∈ T , and (μ, π + rdπ ) ∈ T ,

1
r
[
E{m(G; δ, μ + rdμ, π)} − E{m(G; δ, μ, π)}]
= −E

{
{π1(Z)(1 − π(Z)) − π0(Z)π(Z)} eδ�Z̃

eδ�Z̃π(Z) + 1 − π(Z)
dμ(Z)

}
,

and
1
r

[E{m(G; δ, μ, π + rdπ )} − E{m(G; δ, μ, π)}]

= − E

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
π1(Z){μ1(Z) − μ(Z)eδ�Z̃}

+π0(Z){μ0(Z) − μ(Z)}
]

eδ�Z̃(
eδ�Z̃π(Z) + 1 − π(Z)

)(
eδ�Z̃{π(Z) + rdπ (Z)} + 1 − π(Z) − rdπ (Z)

) dπ (Z)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
.

By dominated convergence theorem, we may exchange the limr→0 with
the expectation, and the Gateuaux derivative with respect to μ along the
direction of dμ exists. Similarly, the Gateuaux derivative with respect to
π along the direction of dπ also exists, and is

−E

⎧⎪⎨⎪⎩
[
π1(Z){μ1(Z) − μ(Z)eδ�Z̃} + π0(Z){μ0(Z) − μ(Z)}

]
eδ�Z̃{

eδ�Z̃π(Z) + 1 − π(Z)
}2 dπ (Z)

⎫⎪⎬⎪⎭.

The smoothness of the numerator, and boundedness of the denomina-
tor similarly allow for second-order differentiability.

To examine the orthogonality condition, that is, Assumption 3(d),
let (μ̄, π̄) ∈ T , dμ(z) = μ̄(z) − μ0(z), dπ (z) = π̄(z) − π1(z), and

m̄(μ, π , f ) = E
[

Z
{

(1 − π(Z))R(Y − μ(Z)ef (Z))

ef (Z)π(Z) + 1 − π(Z)

− π(Z)(1 − R)(Y − μ(Z))ef (Z)

ef (Z)π(Z) + 1 − π(Z)

}]
.

Then,

g0(r) = m̄(μ0 + rdμ, π1 + rdπ , f0)

= E

(
Z

(π0(Z) − rdπ (Z))R(Y1 − (μ0(Z) + rdμ(Z))ef0(Z))

ef0(Z)(π1(Z) + rdπ (Z)) + 1 − π1(Z) − rdπ (Z)

)

− E

(
Z

(π1(Z) + rdπ (Z))(1 − R)(Y0 − (μ0(Z) + rdμ(Z)))ef0(Z)

ef0(Z)(π1(Z) + rdπ (Z)) + 1 − π1(Z) − rdπ (Z)

)

= E

(
Z

r2ef0(Z)dπ (Z)dμ(Z)

ef0(Z){π1(Z) + rdπ (Z)} + π0(Z) − rdπ (Z)

)
,

where f0(z) = δ�
0 z. Let μ̄(z) = μ0(z) + dμ(z) and π̄(z) =

π1(z) + dπ (z). Using a similar argument as above, because (A.1) is
bounded for π = π1 by Assumption 1(c) and μ1(z) is integrable by
Assumption 1(e), the dominated convergence theorem yields
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dg0(r)
dr

=2rE

(
Z

ef0(Z)dπ (Z)dμ(Z)

ef0(Z)(π1(Z) + rdπ (Z)) + 1 − π1(Z) − rdπ (Z)

)

− r2E

(
Z

ef0(Z)(ef0(Z) − 1)dπ (Z)2dμ(Z)

{ef0(Z)(π1(Z) + rdπ (Z)) + 1 − π1(Z) − rdπ (Z)}2

)
.

Therefore,

dg0(r)
dr

∣∣∣∣
r=0

= 0,

which verifies Assumption 3(d).
Assumption 2 implies that there exists sequences log(n)n−1/4 ≤

an = o(1), and ′
n = o(1), such that

‖π̂(·) − π1(·)‖P,2 + ‖μ̂(·) − μ0(·)‖P,2 ≤ ann−1/4,

with probability 1 − ′
n/2. Note that an can be chosen such that these

hold when π̂ and μ̂ are estimated using only (1 − K−1)n (as opposed
to n) samples. Let

Tn =
{
(π , μ) | π , μ are measureable, π(·) ∈ [επ , 1 − επ ], μ(·)

∈ [εμ, ε−1
μ ], and ‖π(·) − π1(·)‖P,2 + ‖μ(·) − μ0(·)‖P,2

≤ ann−1/4
}

,

Then, P({(π̂ (−k), μ̂(−k)) ∈ Tn}K
k=1) ≥ 1 − K′

n. Let n = K′
n, and

Assumption 4(a) is satisfied.
For Q ∈ P , and (μ, π) ∈ T ,

‖m(G; δ̄, π , μ) − m(G; δ0, π , μ)‖Q,2

=
∥∥∥∥Z̃
(
π(1 − R)Y(0) + μ(R − π)

)
(

exp(δ̄�Z̃)

eδ̄�Z̃π + (1 − π)
− exp(δ�

0 Z̃)

eδ
�
0 Z̃π + (1 − π)

)∥∥∥∥
Q,2

≤ ∥∥Z̃ {ππ0μ0 + μ(π1 − π)}∥∥Q,2∥∥∥∥∥(1 − π)
exp(δ̄�

0 Z̃) − exp(δ�Z̃)

(eδ̄�Z̃π + (1 − π))(eδ
�
0 Z̃π + (1 − π))

∥∥∥∥∥
Q,2

≤C
∥∥∥exp(δ̄�

0 z̃) − exp(δ�z̃)
∥∥∥∞ ≤ CLrad‖δ̄ − δ0‖∞,

where we suppressed Z in functions such as π(Z), μ(Z), etc. to simplify
notation, Lrad is the Lipschitz constant of t �→ exp(t) over |t| ≤
supδ∈�,z∈Z |δ�z̃|. Therefore, m(G; δ, μ, π) is Lipschitz in δ. For all
(μ, π) ∈ T , (A.1) and the fact that μ ∈ L2(Q) imply that there exists
a squared-integrable envelope function F1,(μ,π). This, the Lipschitz
constraint, and the bound log N(εN , �, ‖ · ‖∞) ≤ ṽ log(̃a/εN) on
the parameter space imply that supQ log N(εN‖F1,(μ,π)‖Q,2,F1,μ,π , ‖·
‖Q,2) ≤ v log(a/εN). Thus, Assumption 4(b) is verified.

rn = ‖E{m(G; δ, μ, π)} − E{m(G; δ, μ0, π1)}‖

=

∥∥∥∥∥∥∥∥∥∥
E

⎡⎢⎢⎢⎢⎣Z̃

(π1 − π) exp(δ�Z̃)(π1(μ1 − μ exp(δ�Z̃))

+(1 − π)(μ0 − μ))(
eδ�Z̃π + (1 − π)

) (
eδ�Z̃π1 + (1 − π1)

)
⎤⎥⎥⎥⎥⎦
∥∥∥∥∥∥∥∥∥∥

≤ C̃1‖π − π1‖P,2,

for a finite constant C̃1. Therefore, by Assumption 4(c), we can choose
τn = (a3/8

n n−1/4) and δn = √an to satisfy rn ≤ C̃1‖π − π1‖P,2 ≤
δnτn for adequately large n, using the definition of Tn. Next,

{
E‖m(G; δ, μ, π) − m(G; δ0, μ0, π1)‖2

}1/2

≤√
3
{

E‖m(G; δ, μ, π) − m(G; δ, μ0, π)‖2
}1/2

+ √
3
{

E‖m(G; δ, μ0, π) − m(G; δ, μ0, π1)‖2
}1/2

+ √
3
{

E‖m(G; δ, μ0, π1) − m(G; δ0, μ0, π1)‖2
}1/2

=√
3

⎛⎜⎝E

⎡⎢⎣‖Z̃‖2 exp(2δ�Z̃)
{
π1(1 − π)2 + π0π2}(

eδ�Z̃π + (1 − π)
)2 (μ − μ0)

2

⎤⎥⎦
⎞⎟⎠

1/2

+ √
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
‖Z̃‖2

exp(2δ�Z̃)

{
π1
(

Y(1) − μ0 exp(δ�Z̃)
)2

+π0
(

Y(0) − μ0
)2
}

(
eδ�Z̃π + (1 − π)

)2 (
eδ�Z̃π1 + π0

)2

(π1 − π)2

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠

1/2

+ √
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
‖Z̃‖2

π2
1 π2

0

{
π1
(

Y(1) − μ1
)2 + π0

(
Y(0) − μ0

)2

+(π1μ1 + π0μ0)2/π1

}
(

eδ�Z̃π + (1 − π)
)2 (

eδ�Z̃π1 + π0
)2

(eδ
�Z̃ − eδ

�
0 Z̃)2

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠

1/2

≤C̃2
(‖π − π1‖P,2 + ‖μ − μ0‖P,2 + ‖δ − δ0‖2

)
,

where (μ, π) ∈ Tn, ‖δ−δ0‖2 ≤ τn, C̃2 is a finite constant that depends
on constants such as σ 2

U , επ , εμ in Assumption 1. Therefore,

r′n = sup
(μ,π)∈Tn,‖δ−δ0‖2≤τn

{
E‖m(G; δ, μ, π) − m(G; δ0, μ0, π1)‖2

}1/2

≤ C̃2
(

ann−1/4 + τn
)

.

Thus, r′n log1/2(1/r′n) ≤ C̃2a3/8
n n−1/4√log(n) ≤ δn and, thus,

Assumption 4(d) is satisfied.
Let df (z) = f̄ (z) − f0(z) = (δ̄ − δ0)�z̃. Define
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k(r) = m̄(μ0 + rdμ, π1 + rdπ , f + rdf )

= E

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
Z

[
(π0 − rdπ )R(Y1 − (μ0 + rdμ)ef0+rdf )

−(π1 + rdπ )(1 − R)(Y0 − (μ0 + rdμ))ef0+rdf

]
ef0+rdf (π1 + rdπ ) + π0 − rdπ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= E

⎛⎝Zef0

[
(1 − erdf )π0π1μ0 − r(1 − erdf )π1μ0dπ + r2erdf dμdπ

]
ef0+rdf (π1 + rdπ ) + π0 − rdπ

⎞⎠
= E

{
Zef0(Z) h1(Z, r)

h2(Z, r)

}
,

where h1(z, r) = (1 − erdf (z))π0(z)π1(z)μ0(z) − r(1 −
erdf (z))π1(z)μ0(z)dπ (z) + r2erdf (z)dμ(z)dπ (z), and h2(z, r) =
ef0(z)+rdf (z){π1(z) + rdπ (z)} + π0(z) − rdπ (z). Similar as above, by
the dominated convergence theorem, we have

d2k(r)
dr2 =E

(
Zef0(Z)

[
∂2h1(Z, r)/∂r2

h2(Z, r)
− 2

∂h1(Z, r)/∂r∂h2(Z, r)/∂r
h2

2(Z, r)

− h1(Z, r)∂2h2(Z, r)/∂r2

h2
2(Z, r)

+ 2
h1(Z, r){∂h2(Z, r)/∂r}2

h3
2(Z, r)

])
,

where
∂h1(z, r)

∂r
= − erdf π0π1μ0df − (1 − erdf )π1μ0dπ + R11(r, z; κ)

∂2h1(z, r)
∂r2 = − erdf π0π1μ0d2

f + R12(r, z; κ)

∂h2(r)
∂r

=(ef0+rdf − 1)dπ + ef0+rdf π1df + R21(r, z; κ)

∂2h1(r)
∂r2 =ef0+rdf π1d2

f + R22(r, z; κ),

κ = (dπ , dμ, df )
�, and Rij(r, z; κ) is a function of r, z satisfying that

sup
(r,z)∈[0,1]×Z

|Rij(r, z; κ)|
|dπ (z)dμ(z)| + |df (z)dπ (z)| ≤ C̃3

for a constant C̃3. Therefore, after careful regrouping,

λn = sup
r∈(0,1),(μ̄,π̄)∈Tn,|δ̄−δ0|≤τn

∥∥∥∥∥d2k(r)
dr2

∥∥∥∥∥
≤C̃4(‖df ‖2

P,2 + ‖df ‖P,2‖dπ‖P,2 + ‖dπ‖P,2‖dμ‖P,2 + ‖dπ‖2
P,2),

≤C̃5(τ2
n + τnann−1/4 + a2

nn−1/2) ≤ √
ann−1/2 = δnn−1/2,

where C̃i are finite constants. Thus, Assumption 4(d) is verified.
Lastly, to verify Assumption 4(e), note that

E
[

m(G; δ0, μ0, π1)m�(G; δ0, μ0, π1)
]

= E

⎧⎪⎨⎪⎩Z̃Z̃�π0(Z)π1(Z)
π0(Z)var(Y(1) | Z) + π1(Z)var(Y(0) | Z)e2δ�

0 Z̃{
eδ�

0 Z̃π1(Z) + π0(Z)
}2

⎫⎪⎬⎪⎭ ,

which is non-degenerate, because Assumption 1 ensures that var(Y(r) |
Z = z) ≥ σL > 0.

Note that our choice of δn and τn satisfies log(n)/
√

n ≤
a3/8

n n−1/4 = τn ≤ √an = δn, and δn = √an ≥ log(n)−1/2 ≥
n−1/2+1/q log(n) for any constant q > 2. Therefore, all assumptions of
Theorem 3 are verified. Applying this theorem completes the proof.

Supplementary Materials

The supplementary materials provide additional results for showing opti-
mality of the weights for the contrast regression under Poisson distributed
outcomes, details regarding constructing symmetric contrast regression
estimating equations, and proofs of Theorem 2. They also provide exten-
sions for estimating and validating relative treatment effects for survival
outcomes, along with experimental results for these settings.
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